Part Number Hot Search : 
20ETTTS PCD5032T ULN2069N 00144 G12864 K1005 ACT39A 1N5305
Product Description
Full Text Search
 

To Download BSH105 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s m d ty p e w w w . k e x i n . c o m . c n 1 m osf e t n- ch an n el m osf et bs h105 ( k s h 1 0 5 ) f e a tu r e s v d s ( v ) = 2 0 v i d = 1 . 0 5 a ( v g s = 1 0 v ) r d s ( o n ) 2 0 0 m ( v g s = 4 . 5 v ) r d s ( o n ) 2 5 0 m ( v g s = 2 . 5 v ) r d s ( o n ) 3 0 0 m ( v g s = 1 . 8 v ) 0.4 +0.1 -0.1 2.9 +0.1 -0.1 0.95 +0.1 -0.1 1.9 +0.1 -0.1 2.4 +0.1 -0.1 1.3 +0.1 -0.1 0-0.1 0.38 +0.1 -0.1 0.97 +0.1 -0.1 0.55 0.4 1 2 3 unit: mm sot-23 0.1 +0.05 -0.01 1 . gate 2 . source 3 . drain a b s o l u te m a x i m u m ra ti n g s t a = 2 5 s y m b o l r a t i n g u n i t v d s 2 0 v d g r 2 0 v g s 8 t a = 2 5 1 . 0 5 t a = 1 0 0 0 . 6 7 i d m 4 . 2 t a = 2 5 4 1 7 t a = 1 0 0 1 7 0 r t h ja 3 0 0 / w t j 1 5 0 t st g - 5 5 t o 1 5 0 v a p u l s e d d r a i n c u r r e n t p a r a m e t e r c o n t i n u o u s d r a i n c u r r e n t i d d r a i n - s o u r c e v o l t a g e g a t e - s o u r c e v o l t a g e d r a i n - g a t e v o l t a g e (r gs = 20 k) j u n c t i o n t e m p e r a t u r e s t o r a g e t e m p e r a t u r e r a n g e p d m w p o w e r d i s s i p a t i o n t h e r m a l r e s i s t a n c e . j u n c t i o n - t o - a m b i e n t d g s
s m d ty p e w w w . k e x i n . c o m . c n 2 m os f e t n- ch an n el m osf et bs h105 ( k s h 1 0 5 ) e l e c tr i c a l ch a r a c te r i s ti c s t a = 2 5 p a r a m e t e r s y m b o l t e s t c o n d i t i o n s m i n t y p m a x u n i t d r a i n - s o u r c e b r e a k d o w n v o l t a g e v d s s i d = 2 5 0 a , v g s = 0 v 2 0 v v d s = 1 6 v , v g s = 0 v 0 . 1 v d s = 1 6 v , v g s = 0 v , t j = 1 5 0 1 0 g a t e - b o d y l e a k a g e c u r r e n t i g s s v d s = 0 v , v g s = 8 v 1 0 0 n a v d s = v g s , i d = 1 m a 0 . 4 1.2 v d s = v g s , i d = 1 m a , t j = 1 5 0 0 . 1 v g s = 4 . 5 v , i d = 0 . 6 a 2 0 0 v g s = 2 . 5 v , i d = 0 . 6 a 2 5 0 v g s = 2 . 5 v , i d = 0 . 6 a t j = 1 5 0 3 7 5 v g s = 1 . 8 v , i d = 0 . 3 a 3 0 0 f o r w a r d t r a n s c o n d u c t a n c e g f s v d s = 1 6 v ; i d = 0 . 6 a 1 . 6 s i n p u t c a p a c i t a n c e c i ss 1 5 2 o u t p u t c a p a c i t a n c e c o ss 7 1 r e v e r s e t r a n s f e r c a p a c i t a n c e c r ss 3 3 t o t a l g a t e c h a r g e q g 3 . 9 g a t e s o u r c e c h a r g e q g s 0 . 4 g a t e d r a i n c h a r g e q g d 1 . 4 t u r n - o n d e l a y t i m e t d ( o n ) 2 t u r n - o n r i s e t i m e t r 4 . 5 t u r n - o f f d e l a y t i m e t d ( o f f ) 4 5 t u r n - o f f f a l l t i m e t f 2 0 b o d y d i o d e r e v e r s e r e c o v e r y t i m e t r r 2 7 b o d y d i o d e r e v e r s e r e c o v e r y c h a r g e q r r 1 9 n c m a x i m u m b o d y - d i o d e c o n t i n u o u s c u r r e n t i s 1 . 0 5 p u l s e d r e v e r s e d r a i n c u r r e n t i s m 4 . 2 d i o d e f o r w a r d v o l t a g e v s d i s = 0 . 5 a , v g s = 0 v 1 v z e r o g a t e v o l t a g e d r a i n c u r r e n t i d s s u a m r d s ( o n ) s t a t i c d r a i n - s o u r c e o n - r e s i s t a n c e g a t e t h r e s h o l d v o l t a g e v g s ( t h ) v n s v g s = 8 v , v d s = 2 0 v , i d = 1 a , r g = 6 v g s = 0 v , v d s = 1 6 v , f = 1 m h z v g s = 4 . 5 v , v d s = 2 0 v , i d = 1 a i f = 0 . 5 a , d i / d t = 1 0 0 a / s , v g s = 0 v ; v r = 1 6 v a p f n c
s m d ty p e w w w . k e x i n . c o m . c n 3 m osf e t n- ch an n el m osf et bs h105 ( k s h 1 0 5 ) t y p i c a l ch a r a c te r i s i ti c s fig.1. normalised power dissipation. pd% = 100 ? p d /p d 25 ?c = f(t a ) fig.2. normalised continuous drain current. id% = 100 ? i d /i d 25 ?c = f(t a ); conditions: v gs 4.5 v fig.3. safe operating area. t a = 25 ?c i d & i dm = f(v ds ); i dm single pulse; parameter t p fig.4. transient thermal impedance. z th j-a = f(t); parameter d = t p /t fig.5. typical output characteristics, t j = 25 ?c . i d = f(v ds ); parameter v gs fig.6. typical on-state resistance, t j = 25 ?c . r ds(on) = f(i d ); parameter v gs normalised power dissipation, pd (%) 0 2 0 4 0 6 0 8 0 10 0 12 0 0 2 5 5 0 7 5 10 0 12 5 15 0 am bi en t t emp eratu re , t a (c) 0 . 1 1 1 0 10 0 100 0 1 e -0 6 1 e -0 5 1 e -0 4 1 e -0 3 1 e -0 2 1 e -0 1 1e + 0 0 1 e+ 0 1 pul se wid t h, t p (s) p eak p ul se d dra in cu rren t , i dm (a) s ingl e pul s e d = 0. 5 0 . 2 0 . 1 0 . 0 5 0 . 0 2 t p d = t p/t d p t no rma li se d dra in cu rren t , i d (%) 0 2 0 4 0 6 0 8 0 10 0 12 0 0 2 5 5 0 7 5 10 0 12 5 15 0 am bi en t t emp eratu re , t a (c) 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5 0 0 . 5 1 1 . 5 2 dra in - sou rce vol tag e , v d s (v) drain current, id (a) 1 . 1 v 1 . 5 v 1 . 3 v 1 . 7 v 4 . 5 v tj = 25 c 2 . 5 v vgs = 1 . 9 v 2 . 1 v 0 . 0 1 0 . 1 1 1 0 10 0 0 . 1 1 1 0 10 0 dra in -s ou rce vol tag e , v ds (v ) peak p ul se d dra in cu rren t , i dm (a) d. c . 100 m s 10 m s rds(on) = vds/ id t p = 100 u s 1 m s 0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5 drain current, id (a) dra in - sou rce on resi stan ce , rds( on ) ( oh ms) vgs = 4 . 5 v 2 . 5 v 2 . 1 v 1 . 9 v 1 . 7 v tj = 25 c 1 . 5 v
s m d ty p e w w w . k exi n . co m . c n 4 m osfe t . n- ch an n el m osf et bs h105 ( k s h 1 0 5 ) t y p i c a l ch a r a c te r i s i ti c s fig.7. typical transfer characteristics. i d = f(v gs ) fig.8. typical transconductance, t j = 25 ?c . g fs = f(i d ) fig.9. normalised drain-source on-state resistance. r ds(on) /r ds(on)25 ?c = f(t j ) fig.10. gate threshold voltage. v gs(to) = f(t j ); conditions: i d = 1 ma; v ds = v gs fig.11. sub-threshold drain current. i d = f(v gs) ; conditions: t j = 25 ?c fig.12. typical capacitances, c iss , c oss , c rss . c = f(v ds ); conditions: v gs = 0 v; f = 1 mhz 0 0 . 5 1 1 . 5 2 2 . 5 3 0 0 . 5 1 1 . 5 2 2 . 5 3 g ate-s ou rce v ol tag e , vg s (v ) vds > id x rds(on) tj = 25 c 150 c drain current, id (a) threshold voltage, vgs(to), (v) 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 0 2 5 5 0 7 5 10 0 12 5 15 0 j un ct ion t emp eratu re , tj (c) m ini mu m ty pi ca l 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 0 0 . 5 1 1 . 5 2 2 . 5 3 drain current, id (a) t ran sc ondu ctan ce , g fs (s ) 1 e -0 7 1 e -0 6 1 e -0 5 1 e -0 4 1 e -0 3 1 e -0 2 1 e -0 1 1 e+ 0 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 g ate- sou rce v ol tag e , vgs (v) drain current, id (a) v ds = 5 v tj = 25 c normalised drain-source on resistance 0 . 8 0 . 9 1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 0 2 5 5 0 7 5 10 0 12 5 15 0 j un ct ion t emp eratu re , tj (c) vgs = 4 . 5 v 2 . 5 v 1 . 8 v rds(on) @ tj rds(o n) @ 25c 1 0 10 0 100 0 0 . 1 1 1 0 10 0 dra in - sou rce vol tag e , vds (v) cap aci tan ces , ci ss , co ss , crss ( pf ) c i s s co ss crs s
s m d ty p e w w w . k e x i n . c o m . c n 5 m osf e t n- ch an n el m osf et bs h105 ( k s h 1 0 5 ) t y p i c a l ch a r a c te r i s i ti c s fig.13. typical turn-on gate-charge characteristics. v gs = f(q g ) fig.14. typical reverse diode current. i f = f(v sds ); conditions: v gs = 0 v; parameter t j 0 1 2 3 4 5 6 7 8 9 1 0 0 2 4 6 8 g ate ch arg e , qg (n c) vdd = 20 v rd = 20 oh ms tj = 25 c g ate-s ou rce v ol tag e , vgs (v ) -5 -4 . 5 -4 -3 . 5 -3 -2 . 5 -2 -1 . 5 -1 -0 . 5 0 -1 . 2 -1 -0 . 8 -0 . 6 -0 . 4 -0 . 2 0 dra in - sou rce vol tag e , vs ds (v) sou rce-dra in d iod e cu rren t, if (a) tj = 25 c 150 c


▲Up To Search▲   

 
Price & Availability of BSH105

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X